Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biophys J ; 122(3): 554-564, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36560882

RESUMO

F1-ATPase is the world's smallest biological rotary motor driven by ATP hydrolysis at three catalytic ß subunits. The 120° rotational step of the central shaft γ consists of 80° substep driven by ATP binding and a subsequent 40° substep. In order to correlate timing of ATP cleavage at a specific catalytic site with a rotary angle, we designed a new F1-ATPase (F1) from thermophilic Bacillus PS3 carrying ß(E190D/F414E/F420E) mutations, which cause extremely slow rates of both ATP cleavage and ATP binding. We produced an F1 molecule that consists of one mutant ß and two wild-type ßs (hybrid F1). As a result, the new hybrid F1 showed two pausing angles that are separated by 200°. They are attributable to two slowed reaction steps in the mutated ß, thus providing the direct evidence that ATP cleavage occurs at 200° rather than 80° subsequent to ATP binding at 0°. This scenario resolves the long-standing unclarified issue in the chemomechanical coupling scheme and gives insights into the mechanism of driving unidirectional rotation.


Assuntos
Bacillus , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , Bacillus/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Proteínas Motores Moleculares/metabolismo , Hidrólise
3.
Methods Mol Biol ; 778: 259-71, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21809212

RESUMO

F(1)-ATPase is the smallest rotary molecular motor ever found. Unidirectional rotation of the γ-shaft is driven by precisely coordinated sequential ATP hydrolysis reactions in three catalytic sites arranged 120° apart in the cylinder. Single-molecule observation allows us to directly watch the rotation of the shaft using micron-sized plastic beads. Additionally, an advanced version of "total internal reflection fluorescence microscope (TIRFM)" enables us to detect binding and release of energy currency through fluorescently labeled ATP. In this chapter, we describe how to set up the system for simultaneous observation of these two critical events. This specialized optical setup is applicable to a variety of research, not only molecular motors but also other single-molecule topics.


Assuntos
Microscopia de Fluorescência/métodos , Trifosfato de Adenosina/metabolismo , Modelos Biológicos , ATPases Translocadoras de Prótons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...